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MOTION OF A SPHERE IN AN INFINITE CONDUCTIVE FLUID, PRODUCED BY 

A VARIABLE MAGNETIC DIPOLE LOCATED WITHIN THE SPHERE 

V. I. Khonichev and V. I. Yakovlev UDC 538.4 

w In [i] a study was made of two examples of turbulent flow developing in a conduc- 
tive fluid under the action of an ac magnetic field. In one of these the electromagnetic 
field was created by a magnetic dipole moe i~t located in the center of a nonconductive solid 
sphere immersed in an infinite volume of conductive fluid. Due to the high degree of sym- 
metry the applied electromagnetic field did not lead to directed motion of the fluid relative 
to the sphere. 

It is of interest to consider the case of a less symmetric electromagnetic field in 
which the net force exerted on the fluid by the field is nonzero. Such a situation should 
lead to the development of a translational component in the fluid motion relative to the soli( 
body or, what is the same, to translational motion of the solid relative to the fluid, which 
is at rest at infinity. 

For this purpose the present study will consider the flow about a sphere, with the ac 
dipole displaced relative to the center of the sphere (Fig. i). 

The problem will be solved with the assumption that the eccentricity d is small in 
comparison to the sphere radius a, 

e = d / a  << 1, (1.1) 

and that the conventional and magnetic Reynolds numbers are also small, 

Re = ~alv<<1; (1.2) 

Rem = 4n~a/c~<<l, (1.3) 

where vo is the characteristic velocity of the flow which develops and ff and 9 are the con- 
ductivity and kinematic viscosity of the liquid. It should be noted that, in fact, condi- 
tion (1.3) follows from Eq. (1.2), since for all conductive fluids 9 m = c2/4~ >> 9. 

We will consider the flow which is established after the system achieves a periodic 
regime. 

For the case of constant electric and magnetic fields the first step in the investiga- 
tion of sphere motion was made in [2], where the force of electromagnetic origin tending to 
set the sphere in motion relative to the conductive fluid was found Cthe kydrodynamic portion 
of the problem was not considered, although estimates were made of the effectiveness of such 
a means of locomotion in seawater). 

w In view of assumption (1.3), the fluid motion exerts no effect on the electrody- 
namic quantities, so that the problem of defining E and S over all space is separate from 
the hydrodynamic problem. 

The desired fields E and H are defined by a vector potential A:E = --(i/c)SA/St, H = rot 
A where in the spherical coordinate system (r, 8, ~) affixed to the sphere the vector A has 
one (nonzero) component A = A(r, 8, t)e~. Since the displacement d of the center of the 
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Fig. i 

dipole and the direction of the vector mo coincide with the z axis, the problem is axisym- 
metric, i.e., 3/~a E 0. The vector potential A satisfies the equations 

AAx = 0; 

and the boundary conditions 

Axlr=a = A2 I~=a, OAf -gT"r r=a O A2 , ~=a A~ [r= ~ =/= ~ .  

Here the indices I and 2 refer to regions with 
(see Fig. i). Aside from condition (2.3), the 
caused by the applied magnetic dipole moei~t. 

The vector potential of a magnetic dipole 
(Fig. i) has the form 

62.1) 

(2.2) 

~2.31 

the sphere I and in the conductive fluid II 
solution A: as r + 0 must have a singularity 

displaced from the center by a distance d 

A ,  = (mot sin O/(r 2 - -  2rd + d2)3/2)e~ot. 

(i.i), we can rewrite this expression to an accuracy of O(2) in With consideration of Eq. 
the form 

A ,  = (mo/r2)( sin 0 4 (3/2}ca sin O/r)e ~~ 

As r § 0,  t h e  s o l u t i o n  A~ m u s t  p o s s e s s  s u c h  a s i n g u l a r i t y .  

The p e r i o d i c  s o l u t i o n  o f  E q s .  ~ 2 . 1 )  and  ( 2 . 2 )  s a t i s f y i n g  t h e  c o n d i t i o n s  e n u m e r a t e d  a b o v e  
h a s  t h e  f o r m  

A1 = mo[(C1 r -',- i / r  ~) sin 0 + e(D1 r~ + 3a/2r 3) sin 20]ei~t;  C 2 , 4 )  

A,  = (3rao/a3/2rt/2) rr H(2),k . . . . .  (2) 20] e~ t ,  
. [~2 3/2t r) s in  e - r  euo_ah/2 (kr) s in  (2.5) 

H (2)- Ika~ rr(2) (kai 
t t / z ,  �9 D 1  = 3 "'3/2 

C1 = a a rr(2) (ka)' 2a---~ HCa) (ka i' .t~t 5/2 7/2 

C2 . . . .  i D2 = 5 l k = (t  - -  ~)/~, 8 = Vc2/2~o~,  

where ~ is the thickness of the skin layer; H~ 2)- ~x) are Hankel functions of the second kind 
of order X [3]. 

A 

In Eqs. (2.4) and (2.5) the first terms correspond to a central dipole, while the terms 
proportional to the small parameter ~ give the correction for displacement of the dipole from 
the center. 

w The flow of the incompressible conductive fluid considered here is described by the 
hydrodynamic equations 

d i v v = O ,  r o t v  = w; 0 . 1 )  

Owlet + v rot  rot  w ----- (t/pc) rot  []  • I t ] .  ( 3 . 2 )  

In the latter equation the nonlinear term rot [v • w] is omitted, since it is small in com- 
parison with the viscous term as shown by Eq. (1.2). 

The Lorentz force rotor f = r x HJ = "(~/c)[E2 x H=j is calculated from solution 
(2.5) for the vector potential in the region occupied by the conductive fluid, To silnpl~fy 
the formulas, we will consider below the case of strong skin effect, i.e., 
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~/a << t. ( 3 . 3 )  

In this case the Lorentz forces are concentrated in a thin layer of fluid adjoining the sphere 
surface, while 

ro t  f = - - ( l /2n) (mo/a3)S( i /aa) (a /r )3e-~(r -v /6  [(9~) sin 20 + 

+ ( 4 5 / 2 ) e s i n  0.(3 c o s 2 0 - - 1 ) e ~ ] + a n o s c i l l a t i n g  mpplemem. ( 3 . 4 )  

A t e r m  p r o p o r t i o n a l  t o  t h e  s q u a r e  o f  t h e  s m a l l  p a r a m e t e r  ~ h a s  b e e n  o m i t t e d  i n  Eq. r  

The effect of the forces on the fluid, as in the case of a central dipole, consists of 
stationary and oscillating components. Because of the small velocity of the oscillating flow 
[i], the stationary flow is of major interest, so that the oscillating component of the force 
field was not written out in Eq. ~3.4). 

The first term in Eq. (3.4), dependent on angle % as sin 28, corresponds to the force 
field from a central dipole as studied in [i]. The second term, proportional to sin 8.(3 
cos 2 e -- I), is a small correction caused by the parameter ~. We will now denote this compo- 
nent of the force field by f1: 

rot  fl = - - (45A~)e(mo/aa)S( l /a~) (a~)  3e-s(r-a)/6 sin 0.(3 cos s O - -  t)e=. ( 3 . 5 )  

The flow produced by the forces f~ will be considered in the present study. It should be 
noted that in the approximation of Eq. (_3.3), the force f~ has only a single component, 

f l  = ~ e ~ ~--~-) e -2:(r-a)/8 s in s O,cos O. er; ( 3 . 6 )  

H o = mo/a 3 

(Ho is the characteristic magnetic field intensity). 

The flow under study has axial symmetry, while v a E O. The flow turbulence vector his 
only an a-component, i.e., w = w(r, e)e a. According to Eqs. (3.2) and ~3,5), the equation 
for w(r, e) has the form 

Or' + -7-  o-~ (s in 0. w) = �9 (r) (2 sin 0 - -  3 s in  a 0), ( 3 . 7 )  

(§ 45 H2 e--2 (r--a)/5 r = --~- s ~--~ 

The solution of Eq. (3.7) finite at infinity takes on the form 

w(r, O) = w,(r) sin 0 + w2(r) sin 20, 

w~(r)  = f ~ r - S  - -  0 , 8 ~ 2 r  -~  - -  (2/t5) [rY0(r ) - -  r-SJa(r) ] -4- (12/35) [raJ_2(r) - -  r -4Js(r )  ], 

ms(r) --- ~2r -4  - -  (3/7) [r~]_s(r) - r-4Js(r)  ]; 
r 

] .  (r) = ] ~. r (~) d~. 
o o  

(3.8) 

0 . ~  

762 



~,0- 

-r 

~b 1'~ ( /. - a)/# 

Fig. 3 

The arbitrary constants Sz and ~= will be defined below. 

w The velocity field is determined from Eqs. (3.1), 
satisfied by the introduction of a vector potential $ for the velocity v = rot [~(r, 

t O t O 
Vr=rs inO aO (sinO.~),  v o =  r Or (r~).  

From the second of Eqs. (3.1) and the solution (3.8) we have 

t 0 2 t # [ t 0 ] 
-f- ~f~r~ ( r , )  q- 7 ~-[si--E~ - ~  (~ sin O) = --  [wi (r) Sin 0 q- w~ (r) sin 3 e]. 

The b o u n d a r y  c o n d i t i o n s  f o r  $ ( r ,  
have  t h e  form 

the first of which is identically 
e)%]: 

(.4. l )  

( 4 . 2 )  

9) s temming f rom t h e  c o n d i t i o n s  f o r  t h e  v e l o c i t y  v e c t o r  v 

, ( r ,  O) lr=a = 0 ,  Or I = o; ar ~=: ( 4 .3 )  

~ r  o) It_.| :/= oo. (4 .4)  

The latter condition corresponds to finiteness of the flow velocity as r § ~. 

The solution of Eq. (4.2) takes on the form 

~(r,  O) = P(r)  sin 0 q- Q(r) sinSe; (~4.5) 

P(r) = o:lr -F czar -2 - -  0,8~3r -4 H-" (t/2)61 H- ( t /15)[Js(r)  - -  rJ~(r)] -F 

-F (2/105) [r-4J:(r) - -  rSY_2(r) l -}- (1/2t) [~Jo(r) - -  r-2Ys(r)1; 64.6)  
Q(r) = ~sr -4 -F O.ll3=r -~ + (1/42)[rSY_~(r) - r-4Y:(r) l  A- (3/70)[r-=Js(r) - r3Jo(r)1. 

Here we present a solution satisfying Eq. (4.4). From condition (4.3} it follows that 

P(a)  =- O, q (a )  --  O, P ' (a )  -= O, q ' (a )  = O. (_4.72l 

From this it is evident that the kinematic conditions (4.3) are insufficient for definition 
of the arbitrary constants al, a2, a3, 8x, and 82. 

The insufficiency of the conditions stems from the stationary nature of the flow, as a 
result of which the force Zz acting on the dipole moei~t due to the magnetic field of currents 
in the fluid compensates the equalizing stresses T z acting on the sphere surface and produced 
by the fluid, i.e., 

~z + Tz = 0. 64.8) 
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The force Z z is equal in magnitude to the compensating electromagnetic volume forces within 
the entire fluid, while it is opposite in direction; consequently, 

Zz = - -  2g ~ j h r  ( r ,  O) r~cos O. s in  O.dOdr. 
O a  

Substituting Eq. (3.6) here, we obtain 

~, = - 38a~H~. (4.9) 

The expression for T z is found from consideration of the stresses acting on the sphere sur- 
face. The result has the form 

T, = 4~ (-- ~pv + (3/4~) ~'H~). (4.10) 

From Eqs. ( 4 . 8 ) - ( 4 . 1 0 )  i t  f o l l o w s  t h a t  8z = 0. 

The remaining constants are found from conditions C4.7) and take on the following 
values: 

al  = - - (2/45)a- lYa(a)  + ( l / i 5 ) ] 2 ( a ) -  (t/45)a2Jo(a), 

a= = (3/35)a:J-2(a)  - -  (i/9)aSJo(a) - -  ( i~5)a2J3(a)  + ( t /21)Js(a) ,  

~a = ( i /12)a97-~(a)  ~ ( l~2)JT(a)  - -  (3/28)aTJo(a), 

~ = --(15/14)aTI_s(a)  - -  (3/7)I5(a) + (3/2)aSJo(a). 

The values of J~(a) appearing here are defined by Eq. (3.9). 

It must be noted that the constant ~ appearing in Eqs. (4.6) determines the Velocity 
of the liquid at infinity. In fact, according to Eqs. (4.1) and (4.5), 

vlr= | = 2~1( cos O.e r - -  sin O.ee) = 2ulez. 

Thus, far from the sphere surface the fluid has a translational velocity Uo directed along 
the z axis (in the coordinate system fixed to the sphere), while 

u0 = 2~1. 

w We will use the formulas obtained above to investigate the flow. We note that the 
integrals J~(r) [Eq. (3.9)] appearing in the expressions for wCr, 0) and ~(r, 0) can 5e ex- 
panded in an asymptotic series in powers of the small parameters ~/a, when we consider the 
exponential decay of the integrand r (the integrals Js, Js, and J7 are calculated exactly). 
From this we can obtain an expression for the velocity uo: 

u o = 2= 1 ~ 8K(62/a~) ( l  - -  3 .56/a + . . . ) ,  K = 3 a H ~ / 8 ~ p v .  ( 5 . 1 )  

For example, for ~/a : 0.i the terms written in Eq. (5.1) give Uo = 0.00654 ~K. Numerical 
integration gives a value of 0.00783, i.e., the error in the approximation of Eq. (5.1) com- 
prises about 10%. 

It is natural that in Eq. (i.i) the velocity of the flow incident upon the sphere is 
directly proportional to the amount of displacement of the dipole from the center of the 
sphere. Since the sign in Eq. (5.1) is positive, the direction of this flow coincides with 
the z axis (Fig. i). Consequently, the sphere moves in a reverse direction relative to the 
fluid at rest at infinity. For the case being considered ~ << ~ the velocity uo is propor- 
tional to 62 (Just as is the flow velocity in the case of a central dipole [i~). In particu- 
lar, as ~ ~ 0, Uo ~ 0. At first glance it seems that this result contradicts Eq. (4.~, ac- 
cording to which the "attractive force" produced on the sphere by the electromagnetic field 
is independent of 6. In fact, however, at ~ = 0 the force Zz just compensates the surface 
pressure forces produced by the electromagnetic field; volume nonpotential forces are assent 
in the fluid, so that the force Z z compensates the fluid pressure gradient and does not lead 
to fluid motion. 

Figures 2 and 3 depict the character of the flow under study for ~/~ = O.1. Figure 2 
shows the dimensionless functions w~ : w1~r)a/uo and w~ = w2~r)=/uo, which, according to Eqs. 
(3.8), define the turbulence distribution. Figure 3 shows the dimensionless functions F~), 
F~2), F~I), and F~ 2) which defines the velocity fields according to the formulas 

v, (r, O) = uo(F~ i) cos 0 + F~ 2) sin s O.cos 0), 

vo (r, O) = u o ( F ~ i n  0 + / 02 )  sin s 0), 
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obtained from Eqs. (4.1) and (4.5). It is evident from Figs. 2 and 3 that over the entire 
flow field the flow velocity is of the order of magnitude of the incident flow. Consequently, 
for the characteristic velocity vo in Eq. (1.2) we may use uo. Now, on the basis of Eq. 
(5.1), condition (1.2) transforms to the inequality 

which limits the value of the applied magnetic field. 

Figure 4 shows flow lines [lines of constant value of r sin 8-~(r, 8)] lying in the 
plane ~ = const. The flow lines are shown only for the upper hemisphere, since the flow in 
the lower hemisphere is completely symmetric with respect to the plane z = O. In Fig. 4one 
can clearly see the intensity of the turbulence localized in some finite region adjacent to 
the sphere surface. The intensity of the turbulence may be judged from the behavior of w1,* 
* in Fig. 2. The general picture of the flow is that of an external flow around some effec- W 2 

tive body (indicated by the heavy line). 

In conclusion, we note that the force E z setting the sphere in motion with a transla- 
tional velocity uo is approximately (a/~) 2 times larger than the Stokes force~'= 6~p~auo. 

In fact, according to Eqs. (4.9) and (5.1), 

~' /Ez  ~, (3~)8~/a 2. 

The difference between these forces is caused by the difference in the flow patterns for the 
case under consideration and that of Stokes flow-by. 

i. 

2. 

3. 
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